A Regularized Gauss-Newton Trust Region Approach to Imaging in Diffuse Optical Tomography
نویسندگان
چکیده
We present a new algorithm for the solution of nonlinear least squares problems arising from parameterized imaging problems with diffuse optical tomographic data [D. Boas et al., IEEE Signal Process. Mag., 18 (2001), pp. 57–75]. The parameterization arises from the use of parametric level sets for regularization [M. E. Kilmer et al., Proc. SPIE, 5559 (2004), pp. 381– 391], [A. Aghasi, M. E. Kilmer, and E. L. Miller, SIAM J. Imaging Sci., 4 (2011), pp. 618–650]. Such problems lead to Jacobians that have relatively few columns, a relatively modest number of rows, and are ill-conditioned. Moreover, such problems have function and Jacobian evaluations that are computationally expensive. Our optimization algorithm is appropriate for any inverse or imaging problem with those characteristics. In fact, we expect our algorithm to be effective for more general problems with ill-conditioned Jacobians. The algorithm aims to minimize the total number of function and Jacobian evaluations by analyzing which spectral components of the Gauss–Newton direction should be discarded or damped. The analysis considers for each component the reduction of the objective function and the contribution to the search direction, restricting the computed search direction to be within a trust region. The result is a truncated SVD-like approach to choosing the search direction. However, we do not necessarily discard components in order of decreasing singular value, and some components may be scaled to maintain fidelity to the trust region model. Our algorithm uses the Basic Trust Region Algorithm from [A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Trust-Region Methods, SIAM, Philadelphia, 2000]. We prove that our algorithm is globally convergent to a critical point. Our numerical results show that the new algorithm generally outperforms competing methods applied to the DOT imaging problem with parametric level sets, and regularly does so by a significant factor.
منابع مشابه
Gauss-Newton method for image reconstruction in diffuse optical tomography.
We present a regularized Gauss-Newton method for solving the inverse problem of parameter reconstruction from boundary data in frequency-domain diffuse optical tomography. To avoid the explicit formation and inversion of the Hessian which is often prohibitively expensive in terms of memory resources and runtime for large-scale problems, we propose to solve the normal equation at each Newton ste...
متن کاملGauss–Newton reconstruction method for optical tomography using the finite element solution of the radiative transfer equation
The radiative transfer equation can be utilized in optical tomography in situations in which the more commonly applied diffusion approximation is not valid. In this paper, an image reconstruction method based on a frequency domain radiative transfer equation is developed. The approach is based on a total variation output regularized least squares method which is solved with a Gauss–Newton algor...
متن کاملTrust-region Quadratic Methods for Nonlinear Systems of Mixed Equalities and Inequalities
Two trust-region methods for systems of mixed nonlinear equalities, general inequalities and simple bounds are proposed. The first method is based on a Gauss-Newton model, the second one is based on a regularized Gauss-Newton model and results to be a Levenberg-Marquardt method. The globalization strategy uses affine scaling matrices arising in bound-constrained optimization. Global convergence...
متن کاملModels and Algorithms for Diffuse Optical Tomographic System
Diffuse optical tomography (DOT) using near-infrared (NIR) light is a promising tool for noninvasive imaging of deep tissue. The approach is capable of reconstructing the quantitative optical parameters (absorption coefficient and scattering coefficient) of a soft tissue. The motivation for reconstructing the optical property variation is that it and, in particular, the absorption coefficient v...
متن کاملConvergence and Application of a Modified Iteratively Regularized Gauss-Newton Algorithm
We establish theoretical convergence results for an Iteratively Regularized Gauss Newton (IRGN) algorithm with a specific Tikhonov regularization. This Tikhnov regularization, which uses a seminorm generated by a linear operator, is motivated by mapping of the minimization variables to physical space which exposes the different scales of the parameters and therefore also suggests appropriate we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 33 شماره
صفحات -
تاریخ انتشار 2011